Metal-coated hollow nanowires for low-loss transportation of plasmonic modes with nanoscale mode confinement

نویسندگان

  • Yalin Su
  • Zheng Zheng
  • Yusheng Bian
  • Lei Liu
  • Xin Zhao
  • Jiansheng Liu
  • Tao Zhou
  • Shize Guo
  • Wei Niu
  • Yulong Liu
  • Jinsong Zhu
چکیده

Two types of plasmonic waveguiding structures based on hollow dielectric nanowires are proposed and their modal properties are investigated numerically at a wavelength of 1550 nm. The first type of waveguide consists of a high-index hollow nanowire covered directly by a thin metallic film. Depending on the size of the hollow nanowire, such a waveguide could support a plasmonic mode with lower propagation loss than the metal-coated nanowire structures without a hollow core. To further reduce the propagation loss, a second type of waveguide is proposed, which includes an additional low-index silica buffer layer between the metal layer and the hollow nanowire. Simulations reveal that the additional low-index buffer could enable strong hybridization between the dielectric mode and the plasmonic mode, which leads to even lower propagation loss while maintaining nanoscale confinement similar to that of the first type of waveguide. Both of the proposed waveguides are feasible using modern fabrication methods and could facilitate potential applications in integrated photonic components and circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct photonic-plasmonic coupling and routing in single nanowires.

Metallic nanoscale structures are capable of supporting surface plasmon polaritons (SPPs), propagating collective electron oscillations with tight spatial confinement at the metal surface. SPPs represent one of the most promising structures to beat the diffraction limit imposed by conventional dielectric optics. Ag nano wires have drawn increasing research attention due to 2D sub-100 nm mode co...

متن کامل

Low loss coupler to interface silicon waveguide and hybrid plasmonic waveguide

A metallic coupler is proposed to interface a silicon on insulator (SOI) waveguide with a narrow hybrid plasmonic waveguide (200× 200 nm). The device operation is investigated and optimized to attain the best tradeoff between the mode confinement and the propagation loss. Calculations reveal that a high confinement and low loss of the energy is achieved from a silicon slab waveguide into the di...

متن کامل

A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation

The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons are among the most promising candidates for subwavelength optical confinement. However, studies of long-range surface plasmon polaritons have only demonstrated optical ...

متن کامل

Long-range hybrid wedge plasmonic waveguide

We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, w...

متن کامل

Numerical Analysis of Index-Guiding Photonic Crystal Fibers with Low Confinement Loss and Ultra-Flattened Dispersion by FDFD Method

In this article, perfectly matched layer (PML) for the boundary treatment and an efficient compact two dimensional finite-difference frequency-domain (2-D FDFD) method were combined to model photonic crystal fibers (PCF). For photonic crystal fibers, if we assume that the propagation constant along the propagation direction is fixed, three-dimensional hybrid guided modes can be calculated by us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012